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Abstract. Updated phase diagram of the Sb2Te3-Sb2S3 system was constructed using X-ray diffraction 

analysis (XRD), differential thermal analysis (DTA), scanning electron microscopy (SEM), and energy 

dispersive spectroscopy (EDS) methods. In previous studies, this phase diagram was characterized as 

eutectic type without any intermediate compound. In this work, we report the existence of a tetradymite-

like compound Sb2Te2S, which melts with decomposition by a peritectic reaction at 758 K. Based on 

XRD analysis, this compound crystallizes in a tetradymite-type hexagonal structure and has following 

lattice parameters: a = 4.1675 Å, c = 29.483 Å. 
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1.      Introduction   

 

Chalcogenide-based heavy p-block elements have been known as the world’s best 

thermoelectrics (TEs) for room-temperature operation (Yixuan et al., 2019; Taishan et 

al., 2021; Teng et al., 2020; Kwork et al., 2019; Yuan et al., 2019). Also, such materials 

are the main constituent in the design of energy conversion devices, solar panels, infrared 

detectors, new-generation refrigerators, semiconductors, etc. (Hong et al., 2022; He et al., 

2016; Ahluwalia et al., 2017; Xia et al., 2016; Youngjun et al., 2021). In the last decade, 

the discovery of a new quantum state of matter - a three-dimensional topological insulator 

(TI) (Joel, 2010; Rachel et al., 2018) shows the unique transport properties of electrons 

in a topological surface state (TSS). This has drawn a lot of attention to binary (Caterina 

et al., 2016a,b; Conor et al., 2019; Marco et al., 2016; Flamminil et al., 2018) and more 

complex (Pacilè et al., 2018; Estyunin et al., 2020; Shikin et al., 2020; Ilya et al., 2020; 

Munisa et al., 2020) layered narrow-gap semiconductors. It was found that layered phases 

with TIs properties are considered extremely promising for various applications including 

spintronic, medicine, quantum computers, lasers, security systems, etc. (Babanly et al., 
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2017; He et al., 2019; Rabia et al., 2018; Orujlu et al., 2022; Wenchao et al., 2017; Hua 

et al., 2019).  

The tetradymite mineral- Bi2Te2S which exhibits interesting thermoelectric and 

optical properties has binary and ternary structural analogs (Tao et al., 2021; Ryu et al., 

2019; Annese et al., 2018). The binary chalcogenides of tetradymite-type structures have 

chalcogen atoms in their crystal structures that occupy two positions and differ from each 

other by coordination, which is either an octahedron or pyramid. In these types of 

compounds each five-layer slab consists of alternating monoatomic hexagonal layers. 

Neighboring stacks are bonded by Van der Waals forces, allowing crystals to be readily 

cleaved by planes. It is for this reason that tetradymite compounds are classified with 

layered materials (Babanly et al., 2017)  

A new phase Sb2Te2S (Grauner et al., 2019) with a tetradymite structure, which is 

located in the Sb2Te3-Sb2S3 system have been discovered recently. The literature contains 

only a limited amount of information about the phase diagram of this system (Jafarov et 

al., 2014). In mentioned work, the Sb2Te2S ternary compound was not detected in the 

phase diagram of the Sb2Te3-Sb2S3 system and it was shown that this phase diagram is of 

an eutectic type. 

Hence, the purpose of this work is to obtain a new refined picture of phase equilibria 

in the Sb2Te3-Sb2S3 system. 

The primary compounds of the system have been studied in detail. It has been 

established that the Sb2Te3 compound melts congruently at 895 K (Solé et al., 2022). This 

compound has a rhombohedral lattice (sp.gr. R-3m) of the tetradymite type with the 

following lattice parameters in the hexagonal configuration: a=4.264 Å, c=30.458 Å 

(Anderson et al., 1974). The Sb2S3 compound also melts congruently at 819K (Massalski 

et al., 1990) and crystallizes in the orthorhombic structure and belongs to the space group 

Pnma with the following lattice parameters a = 11.3107 Å, b = 3.8363 Å, and c = 11.2285 

Å (Bayliss et al., 1972). 

2.      Experimental part 

The initial compounds were synthesized by melting high purity Sb, Te, and S 

elements (99.999%, Alfa Aesar) in quartz ampoules under vacuum (10-2 Pa). The Sb2Te3 

compound was synthesized in a single zone furnace at 900 K. The Sb2S3 compound was 

synthesized in a two-zone furnace (due to the high sulfur vapor pressure). The 

temperature of the “cold” zone was 650 K, which is below the boiling point of sulfur (718 

K (Emsley et al., 1998), while the temperature of the “hot” zone was maintained 30–50 

K above the melting point of Sb2S3. The synthesis was continued in this mode for 3-4 

hours, after the disappearance of sulfur vapor in the "cold" zone, the ampoule was 

completely transferred to the hot zone. After stirring the homogeneous liquid in the 

ampoule, the oven was gradually cooled down. Then the ampoule was annealed at 600 K 

for 300 hours. Obtained results of diffraction patterns of primary compounds are in good 

agreement with the literature data (Fig. 1) (Arun et al., 1996; Indu et al., 2019). 

Samples of various compositions (0.5 g each) of the Sb2Te3-Sb2S3 system were 

synthesized in evacuated quartz ampoules and then were annealed at 600K for 500 hours 

to reach an equilibrium state. 

The synthesized ingots were studied by X-ray phase analysis at room temperature 

in the range of 2θ = 5-75 degrees on a Bruker D2 PHASER X-ray diffractometer using 

CuKα1 radiation. The lattice parameters were calculated using the TOPAS V4.2 program. 
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A NETZSCH 404 F1 Pegasus system was used for differential thermal analysis. The DTA 

of the annealed alloy was carried out from room temperature to 900 K with a heating and 

cooling rate of 10 K min-1. For SEM analyses used Tescan Vega 3 SBH Scanning Electron 

Microscope device. The energy dispersive X-ray spectroscopy (EDX) method used for 

elemental analysis of synthesized ingots. 

  

Fig. 1. XRD pattern of the a) Sb2S3 (Arun et al., 1996); b) Sb2Te3 (Indu et al., 2019) 

3.      Results and discussion 

Fig. 2 shows X-ray diffraction patterns of thermally treated alloys. As can be seen, 

diffraction patterns of Sb2S3 and 10 mol % Sb2Te3 composition are similar to each other 

and differs only by a slight shift of the diffraction lines to smaller angles.  

 

Fig. 2. XRD patterns for different alloys of the Sb2S3 – Sb2Te3 system 

Similarly, the diffraction pattern of the 90 mol % Sb2Te3 sample consists mainly of 

the Sb2Te3 diffraction peaks of the solid solution based on Sb2Te3. Diffraction patterns of 

the samples containing 40, 60, 70, and 80 mol % Sb2Te3 show their non-homogeneity 

possessing diffraction lines of two different phases where one of them is Sb2Te2S (γ 

phase). In diffraction patterns of the 40 and 60 mol % Sb2Te3 alloys, besides γ phase there 
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is also diffraction peaks of  phase based on Sb2S3. Analysis of the XRD pattern of the 

66.7 mol % Sb2Te3 stoichiometric composition indicates the existence of a ternary 

compound without any traces of other phases with the unit cell parameters: a = 4,1675 Å, 

c = 29,483 Å. 

 Since there are no diffraction lines of the Sb2Te2S compound in the database,           

Fig. 3 shows the diffraction pattern of the alloy of this phase compared to the Bi2Te2S 

compound. As can be seen, the Sb2Te2S compound has a diffraction pattern characteristic 

of the tetradymite structure, and the diffraction peaks are slightly shifted towards larger 

angles compared to the Bi2Te2S compound. The lattice parameters obtained by us (a = 

4.1675 Å; c = 29.483 Å) are in a good agreement with (Grauner et al., 2019). 

 

 
 

Fig. 3. XRD pattern of the Sb2Te2S 

 

The phase diagram of the Sb2S3 – Sb2Te3 system was constructed based on the DTA 

and XRD results of annealed alloys. During thermal analysis, an additional thermal effect 

at 748 K was observed on the DTA heating curve of the Sb2Te2S alloy (Fig.4a). This 

shows that the alloy is in a non-equilibrium state. To continue with, the alloy was 

additionally ground into powder, pressed into a tablet and then was subjected to an 

additional annealing at 600 K for 500 h. After subsequent thermal analysis, on the 

thermogram of the same sample the thermal effect at 748 K completely disappears while 

the intensity of the peak at 758 K increases significantly (Fig. 4b). The last peak at 845 K 

indicates the liquidus temperature. 

 

   

Fig. 4. DTA heating thermograms of the: a) Sb2Te2S b) additionally annealed Sb2Te2S 
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The phase diagram of the Sb2S3 – Sb2Te3 system is given in the Fig. 5.  As can be 

seen from the figure, in this quasi-binary system, there is only one ternary compound that 

melts at 758 K according to the peritectic reaction: 

L+ Sb2Te3() ↔ Sb2Te2S 

 The composition of the invariant peritectic point corresponds to 23 mol % (p) 

Sb2Te3.  
 

 

Fig. 5. Phase diagram of the Sb2S3 – Sb2Te3 system 

The system also has an eutectic point (e) which lies at 21 mol % Sb2Te3 and 748 K. 

Ternary Sb2Te2S has a very narrow primary crystallization area meaning that it is 

extremely difficult to obtain a phase-pure crystalline sample due to direct synthesis. This 

phase has a significant homogeneity area (γ phase) approximately from 66,7 to 69 mol % 

Sb2Te3. The system has two bi-phasic areas based on the initial and ternary compounds. 

The bi-phasic area based on Sb2S3 (α phase) was detected from ~10 to 66,7 mol % Sb2Te3 

and the second one based on Sb2Te3  (β phase) was detected from ~69 to 83 mol % Sb2Te3. 

It is worth mentioning that the updated phase diagram for the Sb2S3 – Sb2Te3 system 

differs from the available version (Jafarov et al., 2014) in regard of detection a new 

ternary compound. 

Fig. 6. SEM images of the alloy containing 66.7 mol. % Sb2Te3 
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Table 1. Elemental microanalysis results of the 66.7 mol. % Sb2Te3 sample 

 
Element Weight % Atom % Error % 

Antimony 46.98 41.54 1.37 

Tellurium 47.75 41.83 1.84 

Sulphur 5.27 16.63 3.17 

 100 100  

 

The SEM image of a sample with 66.7 mol. % Sb2Te3 composition is shown in the 

Fig. 6. The image confirms that the sample is single-phase and has a layered structure. 

The results of elemental microanalysis by the EDS method of the same sample are shown 

in Table 1. As can be seen, the elemental composition corresponds to the stoichiometry 

of this alloy. 

 

4.      Conclusion 

 

Based on the results of the DTA, XRD, SEM and EDS methods, a new phase 

diagram of the Sb2Te3-Sb2S3 system was constructed, which differs from the previous 

one. The updated phase diagram is characterized by the formation of layered tetradymite-

like ternary compound Sb2Te2S, which melts by decomposition at 758 K. A very narrow 

primary crystallization field and 2 bi-phasic regions based on the initial phases and the 

ternary compound were found at the system. The X-ray diffraction pattern shows that the 

Sb2Te2S ternary compound has crystal lattice parameters a = 4.1675 Å, c = 29.483 Å. 

This ternary phase has a practical interest as a potential thermoelectric and topological 

insulator material. 
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